Program Focus

 

Our research is centered on methanogenic archaea, a diverse group of anaerobic microorganisms with a complex energy metabolism dependent on one-carbon biochemistry to reduce simple carbon compounds to produce methane as a final end product. This process, called methanogenesis, generates over a billion tons of methane each year, which accounts for >70% of the methane generated on Earth. Given that methane is a potent greenhouse gas as well as a great energy source, understanding methanogenic metabolism is an important endeavor. Methanogens contain a wealth of unusual biochemistry, much of which remains to be discovered or fully understood. My lab seeks to uncover and characterize novel enzymes, reactions, and biomolecules in methanogens.

 

Current Projects

 

F430-3 function and biosynthesis

Coenzyme F430 is a unique nickel-containing tetrapyrrole that is required for the final step of methanogenesis and the first step of anaerobic methane oxidation catalyzed by methyl-coenzyme M reductase (MCR). We recently discovered a modified version of coenzyme F430 denoted F430-3. The proposed structure of F430-3 contains a cyclized 3-mercaptopropionate moiety bound as a thioether. Interestingly, this is structurally similar to the only other previously described modified F430 that is found in archaea performing anaerobic oxidation of methane via reverse methanogenesis. We propose that F430 modifications are involved in fine-tuning the MCR active site to enhance catalytic efficiency, influence dynamics and stability, and/or to guide the directionality of the MCR reaction. Current research is focused on demonstrating the function of F430-3 using genetic, physiological, and biochemical studies. We are also investigating the enzymes involved in the biosynthesis of F430 modifications.

 

Compatible solute biosynthesis

In order to cope with salt stress in high salinity environments, organisms must accumulate ions or organic compounds inside the cell in order to keep water from leaving the cell via osmosis. The organic compounds used for this function are known as osmolytes or compatible solutes. The major compatible solutes in methanogens are N-acetyl-beta-lysine and beta-glutamate. In N-acetyl-beta-lysine biosynthesis, alpha-lysine is converted to beta-lysine by lysine-2,3-aminomutase (KAM), a member of the radical S-adenosyl-L-methionine (SAM) superfamily. Radical SAM enzymes catalyze diverse and complicated radical-mediated chemistry using a [4Fe-4S] cluster and SAM. beta-glutamate, another compatible solute in methanogens, is likely also generated via radical SAM dependent chemistry. We are currently working to characterize the KAM enzymes from methanogens and to determine the enzyme responsible for beta-glutamate synthesis.

 

Methylated pterin biosynthesis

Methanopterin is a one-carbon group (C1) carrier coenzyme present in methanogens that is structurally and functionally similar to folate, the more common C1 transfer coenzyme.  One difference in the structure of methanopterin compared to folate is the presence of two methyl groups at the C-7 and C-9 positions of the pterin. We have identified a single radical SAM enzyme from Methanocaldococcus jannaschii that catalyzes the addition of both methyl groups to a pterin-containing precursor when expressed in E. coli. We are now working to biochemically and mechanistically characterize this new radical SAM methylase.

© 2018 by Kylie Allen

Proudly created with wix.com